40 research outputs found

    Alpha-Lipoic Acid for the Prevention of Diabetic Macular Edema

    Get PDF
    Introduction: To evaluate the effect of alpha-lipoic acid (ALA) on the occurrence of diabetic macular edema. Methods: Randomized, double-blind, placebo-controlled, multicenter, multinational study. Patients were randomized to the treatment group with 600 mg ALA per day or the placebo group. Every 6 months stereo fundus photographs, HbA1c levels, and an ophthalmological examination were documented. The primary endpoint was the occurrence of clinically significant macular edema (CSME) within a follow-up period of 2 years. Results: We randomized 235 patients with type II diabetes mellitus into the treatment group (mean age 58.0 years) and 232 into the placebo group (mean age 57.9 years). Mean HbA1c level was 8.1, with no significant differences between the treatment (mean 8.2, SD +/- 1.35) and placebo groups (mean 8.1, SD +/- 1.29). HbA1c values remained constant over time. In the treatment and placebo groups, 84 and 86 patients (35.7 and 37.1%) had insulin-dependent diabetes mellitus (IDDM) with a median duration of diabetes of 9.3 versus 9.0 years in the placebo group. Visual acuity remained unchanged during the entire trial. Concerning the primary endpoint, the study provided a negative result, i.e. 26/235 patients in the treatment group and 30/232 patients in the placebo group developed CSME. Confirmatory intention-to-treat analysis of the primary endpoint revealed no statistically significant difference between groups (log-rank test, p = 0.7108, HR = 0.9057 with CI = 0.5355-1.5317). Median follow-up was identical (2.00 years). Conclusions: A daily dosage of 600 mg ALA does not prevent the occurrence of CSME in IDDM patients. Copyright (C) 2011 S. Karger AG, Base

    Tumor Vascular Morphology Undergoes Dramatic Changes during Outgrowth of B16 Melanoma While Proangiogenic Gene Expression Remains Unchanged

    Get PDF
    In established tumors, angiogenic endothelial cells (ECs) coexist next to “quiescent” EC in matured vessels. We hypothesized that angio-gene expression of B16.F10 melanoma would differ depending on the growth stage. Unraveling the spatiotemporal nature thereof is essential for drug regimen design aimed to affect multiple neovascularization stages. We determined the angiogenic phenotype—represented by 52 angio-genes—and vascular morphology of small, intermediate, and large s.c. growing mouse B16.F10 tumors and demonstrated that expression of these genes did not differ between the different growth stages. Yet vascular morphology changed dramatically from small vessels without lumen in small to larger vessels with increased lumen size in intermediate/large tumors. Separate analysis of these vascular morphologies revealed a significant difference in αSMA expression in relation to vessel morphology, while no relation with VEGF, HIF-1α, nor Dll4 expression levels was observed. We conclude that the tumor vasculature remains actively engaged in angiogenesis during B16.F10 melanoma outgrowth and that the major change in tumor vascular morphology does not follow molecular concepts generated in other angiogenesis models

    High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A

    Get PDF
    Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here we report that in mouse kidney endothelial cells, high glucose causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc-transferase, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding to a glucose-responsive GC-box in the angiopoietin-2 (Ang-2) promoter, resulting in increased Ang-2 expression. Increased Ang-2 expression induced by high glucose increased expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in cells and in kidneys from diabetic mice and sensitized microvascular endothelial cells to the proinflammatory effects of tumor necrosis factor alpha. This novel mechanism for regulating gene expression may play a role in the pathobiology of diabetic vascular disease

    Gene Expression Profiling of Vasoregression in the Retina—Involvement of Microglial Cells

    Get PDF
    Vasoregression is a hallmark of vascular eye diseases but the mechanisms involved are still largely unknown. We have recently characterized a rat ciliopathy model which develops primary photoreceptor degeneration and secondary vasoregression. To improve the understanding of secondary vasoregression in retinal neurodegeneration, we used microarray techniques to compare gene expression profiles in this new model before and after retinal vasoregression. Differential gene expression was validated by quantitative RT-PCR, Western blot and immunofluorescence. Of the 157 genes regulated more than twofold, the MHC class II invariant chain CD74 yielded the strongest upregulation, and was allocated to activated microglial cells close to the vessels undergoing vasoregression. Pathway clustering identified genes of the immune system including inflammatory signaling, and components of the complement cascade upregulated during vasoregression. Together, our data suggest that microglial cells involved in retinal immune response participate in the initiation of vasoregression in the retina

    Pars plana vitrectomy for diabetic macular edema. Internal limiting membrane delamination vs posterior hyaloid removal. A prospective randomized trial

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.BACKGROUND: Diabetes mellitus, as well as subsequent ocular complications such as cystoid macular edema (CME), are of fundametal socio-economic relevance. Therefore, we evaluated the influence of internal limiting membrane (ILM) removal on longterm morphological and functional outcome in patients with diabetes mellitus (DM) type 2 and chronic CME without evident vitreomacular traction. METHOD: Forty eyes with attached posterior hyaloid were included in this prospective trial and randomized intraoperatively. Prior focal (n = 31) or panretinal (n = 25) laser coagulation was permitted. Group I (n = 19 patients) underwent surgical induction of posterior vitreous detachment (PVD), group II (n = 20 patients) PVD and removal of the ILM. Eleven patients with detached posterior hyaloid (group III) were not randomized, and ILM removal was performed. One eye had to be excluded from further analysis. Examinations included ETDRS best-corrected visual acuity (BCVA), fluorescein angiography (FLA) and OCT at baseline, 3 and 6 months postoperatively. Main outcome measure was BCVA at 6 months, secondary was foveal thickness. RESULTS: Mean BCVA over 6 months remained unchanged in 85% of patients of group II, and decreased in 53% of patients of group I. Results were not statistically significant different [group I: mean decrease log MAR 95% CI (0.06; 0.32), group II: (-0.02; 0.11)]. OCT revealed a significantly greater reduction of foveal thickness following PVD with ILM removal [group I: mean change: 95% CI (-208.95 μm; -78.05 μm), group II: (-80.90 μm: +59.17 μm)]. CONCLUSION: Vitrectomy, PVD with or without ILM removal does not improve vision in patients with DM type 2 and cystoid diabetic macular edema without evident vitreoretinal traction. ILM delamination shows improved morphological results, and appears to be beneficial in eyes with preexisting PVD

    Novel Rodent Models for Macular Research

    Get PDF
    BACKGROUND: Many disabling human retinal disorders involve the central retina, particularly the macula. However, the commonly used rodent models in research, mouse and rat, do not possess a macula. The purpose of this study was to identify small laboratory rodents with a significant central region as potential new models for macular research. METHODOLOGY/PRINCIPAL FINDINGS: Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli, laboratory rodents less commonly used in retinal research, were subjected to confocal scanning laser ophthalmoscopy (cSLO), fluorescein and indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT) using standard equipment (Heidelberg Engineering HRA1 and Spectralis™) adapted to small rodent eyes. The existence of a visual streak-like pattern was assessed on the basis of vascular topography, retinal thickness, and the topography of retinal ganglion cells and cone photoreceptors. All three species examined showed evidence of a significant horizontal streak-like specialization. cSLO angiography and retinal wholemounts revealed that superficial retinal blood vessels typically ramify and narrow into a sparse capillary net at the border of the respective area located dorsal to the optic nerve. Similar to the macular region, there was an absence of larger blood vessels in the streak region. Furthermore, the thickness of the photoreceptor layer and the population density of neurons in the ganglion cell layer were markedly increased in the visual streak region. CONCLUSIONS/SIGNIFICANCE: The retinal specializations of Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli resemble features of the primate macula. Hence, the rodents reported here may serve to study aspects of macular development and diseases like age-related macular degeneration and diabetic macular edema, and the preclinical assessment of therapeutic strategies

    Advances in research on the use of biochar in soil for remediation: a review

    Get PDF
    Purpose: Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants.  Materials and methods: Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively.  Results and discussion: The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar’s suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4–5.5) and contaminant concentrations ( 50 mg kg−1).  Conclusions: Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar’s ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist

    Receptor for advanced glycation end product expression in experimental diabetic retinopathy

    No full text
    The advanced glycation end product (AGE)-receptor for AGE (RAGE) pathway is involved in the pathogenesis of diabetic microvascular damage. The special distribution of RAGE and its engagement has an impact on the development of diabetic retinopathy. In the present study, we used immunofluorescence and confocal laser microscopy to study RAGE expression with special emphasis on Muller glia in Sprague Dawley rats. RAGE expression was low in nondiabetic retinae and was found in ganglion cells and Muller cell end feet. In diabetic retinae, upregulated RAGE was predominantly expressed in retinal glia. Since Muller cells are important in the regulation of important features of early retinal vascular damage, such as vascular permeability, homeostasis, and response to stress, RAGE appears to be a central modulator in diabetic retinopathy
    corecore